\qquad
Formulas that will be given on the test:

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1}+\mathrm{d}(\mathrm{n}-1) ; \quad \mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1}(\mathrm{r})^{\mathrm{n}-1} ; \quad \mathrm{S}_{\mathrm{n}}=\frac{n}{2}\left(\mathrm{a}_{1}+\mathrm{a}_{\mathrm{n}}\right) ; \quad \mathrm{S}_{\mathrm{n}}=\mathrm{a}_{1}\left(\frac{1-r^{n}}{1-r}\right) ; \quad \mathrm{S}=\frac{a_{1}}{1-r}
$$

Matrices:
Given the following matrices perform the indicated operations if possible:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-5 & -2 \\
3 & 4
\end{array}\right] \\
& \text { 1. } A+E \\
& {\left[\begin{array}{rr}
-9 & 4 \\
3 & 12
\end{array}\right]}
\end{aligned}
$$

$$
\boldsymbol{B}=\left[\begin{array}{ccc}
0 & 3 & -6 \\
1 & -7 & 2
\end{array}\right]
$$

$$
\boldsymbol{C}=\left[\begin{array}{ccc}
4 & 2 & 0 \\
-1 & 7 & 1
\end{array}\right] \quad \boldsymbol{D}=\left[\begin{array}{l}
-6 \\
-3
\end{array}\right]
$$

2. $-3 C+2 B$

3. $A E$

$$
\left[\begin{array}{cc}
20 & -46 \\
-12 & 50
\end{array}\right]
$$

8. B^{2}

DIE
11. $C D$

DNE
4. $2 A+3 C$

DUE
7. $C F+A$

10. E^{2}
$\left[\begin{array}{ll}16 & 24 \\ 0 & 64\end{array}\right]$
3. $B-6 C$
$\boldsymbol{E}=\left[\begin{array}{cc}-4 & 6 \\ 0 & 8\end{array}\right]$

$$
\left.\begin{array}{c}
F=\left[\begin{array}{l}
8 \\
1 \\
5
\end{array}\right. \\
-6 \\
-4
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
-24 \\
7
\end{array}\right]} \\
& \text { 6. } E D \\
& {\left[\begin{array}{c}
6 \\
-24
\end{array}\right]}
\end{aligned}
$$

9. $A B$

$$
\left[\begin{array}{ccc}
-2 & -1 & 26 \\
4 & -19 & -10
\end{array}\right]
$$

12. $D C$

ONE

If $A=\left(\begin{array}{cc}2 p & 3 \\ -4 p & p\end{array}\right)$ and $\operatorname{det} A=14$, find the possible values $\quad A$ and B are 2×2 matrices, where $A=\left[\begin{array}{ll}5 & 2 \\ 2 & 0\end{array}\right]$ and of $p . \quad 2 p^{2}+12 p=14 \quad 2(p+7)(p-1)$

$$
\begin{aligned}
& 2 p^{2}+12 p-14=0 \\
& 2\left(p^{2}+6 p-7\right)=0
\end{aligned}
$$

$$
B A=\left[\begin{array}{ll}
11 & 2 \\
44 & 8
\end{array}\right] . \text { Find } B \cdot\left[\begin{array}{ll}
5 & 2 \\
2 & 0
\end{array}\right] B=\left[\begin{array}{ll}
11 & 2 \\
44 & 8
\end{array}\right]
$$

$$
B=\left[\begin{array}{cc}
22 & 4 \\
-49.5 & -9
\end{array}\right] \quad B=\left[\begin{array}{ll}
5 & 2 \\
2 & 0
\end{array}\right]^{-1}\left[\begin{array}{ll}
11 & 2 \\
44 & 8
\end{array}\right]
$$

Let $M=\left(\begin{array}{cc}a & 2 \\ 2 & -1\end{array}\right)$, where $\mathrm{a} \in \mathbb{Z}$.
(a) Find M^{2} in terms of $a .\left[\begin{array}{rr}a & 2 \\ 2 & -1\end{array}\right]\left[\begin{array}{cc}a & 2 \\ 2 & -1\end{array}\right]=\left[\begin{array}{cc}a^{2}+4 & 2 a-2 \\ 2 a-2 & 5\end{array}\right]$
(b) If M^{2} is equal to $\left(\begin{array}{rr}5 & -4 \\ -4 & 5\end{array}\right)$, find the value of a.

$$
\begin{aligned}
& 2 a-1 x-4 \\
&+2
\end{aligned} \quad 2 a=-2 \quad a=-1
$$

(c) Using this value of a, find M^{-1} and hence solve the system of equations:

$$
\begin{aligned}
& -x+2 y=-3 \\
& 2 x-y=3
\end{aligned}
$$

$$
\left[\begin{array}{rr}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-3 \\
3
\end{array}\right] \quad\left(\begin{array}{l}
x=1 \\
y=-1
\end{array}\right.
$$

The talent show committee sold a total of 530 tickets in advance. Student tickets cost $\$ 3$ each and the adult tickets cost $\$ 4$ each. If the total receipts were $\$ 1740$, how many of each type of ticket were sold? Set up a matrix to solve.

$$
\begin{array}{lr}
x=\text { Student } & x+y=530 \\
Y=\text { Adult } & 3 x+4 y=1740
\end{array}
$$

$$
\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
530 \\
1740
\end{array}\right]\left[\begin{array}{l}
x=380 \\
y=150
\end{array}\right.
$$

Rob has 40 coins, all dimes and quarters, worth $\$ 7.60$. How many dimes and how many quarters does he have? Set up a matrix to solve.

$$
\left[\begin{array}{cc}
1 & 1 \\
.10 & .25
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
40 \\
7.60
\end{array}\right] \begin{aligned}
& x=16 \\
& y=24
\end{aligned}
$$

Binomial Expansion:

Use binomial expansion to expand.
$(s-5 v)^{5}$

$$
\begin{aligned}
& 1 s^{5}+5 s^{4}(-5 v)+10 s^{3}(-5 v)^{2}+10 s^{2}(-5 v)^{3}+5 s(-5 v)^{4}+1(-5 v)^{5} \\
& s^{5}-25 s^{4} v+250 s^{3} v^{2}-1250 s^{2} v^{3}+3125 s v^{4}-3125 v^{5}
\end{aligned}
$$

$$
(b+2)^{7}
$$

$$
1 b^{7}+7 b^{6}(2)+21 b^{5}(2)^{2}+35 b^{4}(2)^{3}+35 b^{3}(2)^{4}+21 b^{2}(2)^{2}+7 b(2)^{6}+1(2)^{7}
$$

$$
b^{7}+14 b^{6}+84 b^{5}+280 b^{4}+560 b^{3}+672 b^{2}+448 b+128
$$

$(d-3 b)^{3}$.

$$
\begin{aligned}
& 1 d^{3}+3 d^{2}(-3 b)+3 d(-3 b)^{2}+1(-3 b)^{3} \\
& d^{3}-9 d^{2} b+27 d b^{2}-27 b^{3}
\end{aligned}
$$

Find the following terms of the binomial expansion.

Sequences:

Describe the pattern in the sequence. Find the next three terms.
$13,15,17,19, \ldots$ AdDing 2 each time \rightarrow Arithmetic $\rightarrow 21,23,25$
$4,8,16,32, \ldots$ multiply by 2 each time \rightarrow Geometric $\rightarrow 64,128,256$
$1,2,6,16,44, \ldots$
A00 the two terms then multiply by $2 \rightarrow$ General sequence $\rightarrow 120,328,896$
625, 250, 100, 40,...
multiply by $2 / 5$ each time \rightarrow Geometric $\rightarrow 16,6.4,2.56$
Are the following Arithmetic, Geometric, or Neither? Explain your reasoning.
$13,20,27,34, \ldots$ Arithmetic $\rightarrow d=+7$
$2,-4,-16,-36, \ldots$ Neither \rightarrow No common Differance or Ratio
$14,21,42,77, \ldots$ Neither \rightarrow No Common Differance or Ratio
$\frac{1}{3}, \frac{2}{9}, \frac{4}{27}, \frac{8}{81}, \frac{16}{243}, \ldots$ Geometric $\rightarrow r=2 / 3$
$-2.4,9.8,22,34.2, \ldots$ Arithmetic $\rightarrow d=+12.2$
$6,12,24,48, \ldots$ Geometric $\rightarrow r=2$

Given the formula $a_{n}=-4 n(n-1)$ Find the first five terms of the sequence.

$$
\begin{gathered}
a_{1}=-4(1)(1+)=0 \quad a_{2}=-4(2)(2-1)=-8 \quad \begin{array}{c}
a_{3}=-4(3)(3-1)=-24 \\
-8)(1)
\end{array} \\
\begin{array}{c}
-12(2)
\end{array} \\
a_{4}=-4(4)(4-1) \quad a_{5}=-4(5)(5-1) \\
-16(3) \\
-48 \\
-20(4) \\
-80
\end{gathered}
$$

Write the explicit formula (rule) for the sequence. Then find the fifth term in the sequence.

$$
\begin{aligned}
& a_{1}=3, r=-3 \quad a_{n}=\left\{3(-3)^{n-1}\right\} \quad a_{5}=243 \\
& a_{1}=5, d=-7 a_{n}=\begin{array}{l}
\{5-7(d-1)\} \\
\{12-7 d\}
\end{array} \quad a_{5}=-23 \\
& a_{1}=120, r=0.3 a_{n}=\left\{120(.3)^{n-1}\right\} a_{5}=.972 \\
& a_{1}=1, d=6 \quad a_{n}=\left\{\begin{array}{l}
\{1+6(n-1)\} \\
\{6 n-5\}
\end{array} \quad a_{5}=25\right.
\end{aligned}
$$

$$
\begin{aligned}
& x=\text { dimes } \\
& y=\text { quarters } \\
& x+y=40 \\
& .10 x+.25 y=7.60
\end{aligned}
$$

Write the recursive formula for the sequences and find the next term.
$8,10,12,14,16, \ldots . \quad a_{n+1}=a_{n}+2 \quad a_{0}=18$
$15,26,48,92,180, \ldots$.

$$
a_{n+1}=2 a_{n}-4 \quad a_{6}=356
$$

Write the explicit formula (rule) for the sequence and find the indicated term
$7,2,-3,-8,-13, \ldots$ find a_{14}.
$a_{n}=\{7-5(n-1)\}$
$=\{12-5 n\}$
$\underset{1+3}{\frac{1}{4} \frac{2}{4}} \frac{3}{7}, \frac{4}{4+3} \frac{4}{312} \frac{5}{9+3}, \frac{3}{16}, \frac{6}{14}, \frac{6}{28}$. find a_{14}

$$
a_{n}=\left\{\frac{n+1}{n^{2}+3}\right\} \quad a_{14}=\frac{14+1}{14^{2}+3}=\frac{15}{199}
$$

The table shows the predicted growth of a particular bacteria after various numbers of hours. Write an explicit formula (a rule) for the sequence of the number of bacteria.

Hours (n)	1	2	3	4	5	$\begin{aligned} \left\{a_{n}\right\} & =\{19+19(n-1)\} \\ & =\left\{199+1 a_{n}-19\right\} \\ & =\left\{19_{n}\right\} \end{aligned}$
Number of Bacteria	19	38	57	76	95	

Suppose you drop a tennis ball from a height of 15 feet. After the ball hits the floor, it rebounds to 85% of its previous height. How high will the ball rebound after its third bounce? Round to the nearest tenth.
$\frac{15}{0 \text { Bounus }} \frac{12.8}{1^{1+3} \text { Bounce }} \frac{10.8}{2^{n o c} \text { Bounce }} \frac{9.2}{3^{d i d} \text { Boance }}$
Orlando is making a design for a logo. He begins with a square measuring 24 inches on a side. The second square has a side length of 19.2 inches, and the third square has a side length of 15.36 inches. Which square will be the first square with a side length of less than 12 inches?
$\frac{24}{\beta^{\text {sis }} \text { Square }} \quad \frac{19.2}{2^{\text {nd }} \text { square }} \frac{15.36}{3^{\text {ra }} \text { square }} \quad \frac{12.288}{4^{\text {th }} \text { square }} \quad \frac{9.8304}{5^{5 n} \text { square }}$

Series:

Use summation notation (sigma) to write the following series:

$$
\left.\begin{array}{l}
49+54+59+\ldots \text { for } 14 \text { terms. } \sum_{n=1}^{14} 5 n+44 \\
49+5(n-1) \\
2+4+6+8+\ldots \text { for } 10 \text { terms } \sum_{n=1}^{10} 2 n \\
2+2(n-1)
\end{array}\right] \begin{aligned}
& 6.6+15.4+24.2+\ldots \text { for } 5 \text { terms. } \sum_{n=1}^{5} 8.8 n-2.2 \\
& 6.6+8.8(n-1)
\end{aligned}
$$

Evaluate the following series:
$6.6+8.8(n-1)$

$$
\begin{aligned}
& \sum_{n=1}^{4}(n+4)=26 \\
& \sum_{n=3}^{8} 5 n=165 \\
& 1+4+16+64+256+1024=1365
\end{aligned}
$$

$$
6-24+96-384+\ldots \text { to } S_{7} \cdot \sum_{n=1}^{7}-4 n=-112
$$

$1000+500+250+\ldots$ to $S_{5} \cdot \sum_{n=1}^{5} 1000(1 / 2)^{n-1}=1937.5$
Does the infinite geometric series diverge or converge? Explain.

$$
\begin{aligned}
& \frac{1}{5}+\frac{1}{10}+\frac{1}{20}+\frac{1}{40}+\ldots \text { Convergh } \\
& 3+9+27+81+\ldots \text { Divergh }
\end{aligned}
$$

Evaluate the infinite geometric series. Round to the nearest hundredth if necessary.
$8+4+2+\ldots \quad S_{n}=\frac{8}{1-1 / 2}=\frac{8}{1 / 2}=16$
$1+0.1+0.01+\ldots S_{n}=\frac{1}{1-1 / 10}=\frac{1}{9 / 10}=\frac{10}{9}$

Dante is making a necklace with 18 rows of tiny beads in which the number of beads per row is given by the series $3+$ $10+17+24+\ldots \quad 3+7(n-1)=7 n-4$
a. Use summation notation to write the series. Explain what the numbers in the summation notation represent in this situation and how you found the expression used in the summation.

$$
\sum_{n=1}^{18} 7 n-4
$$

b. Find the total number of beads in the necklace. Explain your method for finding the total number of beads.

Cumulative Review:

$$
\begin{array}{ll}
\lim _{x \rightarrow-5} \frac{x^{2}+10 x+25}{25-x^{2}}=\frac{0}{0} \text { Factor, Cancel, Piugin! } & \lim _{x \rightarrow 2} \frac{x^{3}-2 x^{2}+x-2}{x-2}=\frac{0}{0} \text { Factor, Cancel, Plugin! } \\
=\frac{(x+5)(x+5)}{(5-x)(5+x)}=\lim _{x \rightarrow-5} \frac{x+5}{5-x}=\frac{-5+5}{5+5}=\frac{0}{10}=0 \quad \begin{array}{lllll}
\text { a } 1-2 & 1-2 & \frac{(x-2)\left(x^{2}+1\right)}{1 x^{2}} 20 & 2 \\
1 x^{2} & 0 \times 1 & 1 & \lim _{x-2} & x^{2}+1=a^{2}+1 \\
x \rightarrow a & =x^{2}
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{4(x+h)-7-(4 x-7)}{h} \\
& \quad \frac{4 x+h-7-4 x+7}{h}=\frac{h}{h}=1
\end{aligned}
$$

An airplane travels 250 mph due south. There is a steady 35 mph wind with a bearing of 90°.
A) Write the component form of the velocity vector of the airplane (without wind).

$$
\langle 0,-250\rangle
$$

B) Write the component form offlevelacityseetor of the airplane. Wincl
\square
C) Write the component form of the actual velocity vector of the airplane.

$$
\langle 35,-250\rangle
$$

D) What is the actual ground speed of the airplane?

$$
\sqrt{35^{2}+250^{2}}=252.44 \mathrm{mph}
$$

E) What is the actual compass bearing of the airplane?

An airplane is flying at a direction angle of 40° at 350 mph . A wind is blowing west at 70 mph .
A) Find the actual speed of the plane
$\langle 198.12,224.98\rangle$

B) Find the actual bearing of the plane

$$
1446.3^{3} \tan ^{-1}\left(\frac{224.98}{198.12}\right) \text { Beaning }=41.37^{\circ}
$$

C) Find the actual directional angle of the plane
\square

For an ellipse, find the a) Center, b) Vertices, c) Foci, d) Major Axis
For a hyperbola, find a) Center, b) Vertices, c) Foci, d) Asymptotes
7. $4 x^{2}+9 y^{2}-16 x-36 y+16=0$

Name_Ellipse

8. $4 x^{2}+24 x-9 y^{2}-36 y-36=0$

Name h pergola

9. $y^{2}-8 x-6 y-7=0$

$$
\begin{aligned}
y^{2}-6 y+9-9-7 & =8 x \\
(y-3)^{2}-16 & =8 x
\end{aligned}
$$

$$
x=1 / 8(y-3)^{2}-2 \quad \frac{1}{8}=\frac{1}{4 p}
$$

$$
4 p=8
$$

$$
p=2
$$

$$
\begin{aligned}
& 4\left(x^{2}+6 x\right)-9\left(y^{2}+4 y\right)=36 \\
& \text { a) }(-3,-2) \\
& \text { b) }-(0,-2)(-6,-2) \\
& +\left(x^{2}+6 x+9\right)-9\left(y^{2}+4 y+4\right)=\frac{36-36}{+36} \\
& \text { d) } \frac{\left(-3 \pm \sqrt{13}, A_{2}\right)}{y+2= \pm 2 / 3(x-3)} \\
& \frac{4(x+3)^{2}}{36}-\frac{9(y+2)^{2}}{36}=1 \\
& \frac{(x+3)^{2}}{9}-\frac{(y+2)^{2}}{4}=1 \\
& (-3,-2) \\
& \begin{array}{l}
\text { c) } \frac{\left(-3 \pm \sqrt{13}, A_{2}\right)}{y+2= \pm 2 / 3(x-3)} \\
a=3 \quad c^{2} 9+4
\end{array} \\
& b=2 \quad c^{2}=13 \\
& c=\sqrt{13}
\end{aligned}
$$

$$
\begin{aligned}
& 4\left(x^{2}-4 x+4\right)+9\left(y^{2}-4 y+4\right)=4 \\
& \text { a) }(2,2) \\
& \frac{4(x-2)^{2}}{36}+\frac{9(y-2)^{2}}{36}=1 \quad \begin{array}{l}
\text { c) } \frac{(2 \pm \sqrt{5}, 2)}{\text { d) } 2 \text { in }}
\end{array} \\
& \frac{(x-2)^{2}}{9}+\frac{(y-2)^{2}}{4}=1 \\
& a=3 \quad c^{2}=9-4=5 \\
& b=2 \\
& c=\sqrt{5}
\end{aligned}
$$

